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CONTROL OF THE MOTION OF A SOLID ROTATING ABOUT ITS CENTRE OF MASS* 

D.B. LEBEDEV 

Problems of controlling the spherical motion of a rotating solid when the 
controlling torques delivered to the body by the controls do not contain 
an x-component and their axes are not the principal central axes of 
inertia of the body are investigated. It is shown that as the transverse 
components of the angular velocity vector are suppressed and the 
orientation of the non-principal axis of inertia of the body stabilizes, 
there is an accompanying drop in the angular velocity of twist and, in 
the final analysis, the rotating body loses its gyroscopic properties. 
On the other hand, control of the uniform rotation of the body about a 
principal axis of inertia and of its orientation in inertia 
space excludes a marked dynamical effect. Control algorithms are 
porposed to guarantee stability of the relevant motions of the body when 
the control parameters are subject to constraints. The efficiency of 
these solutions is confirmed by modelling experiments. 

1. Statement of the problem. We introduce three right-handed Cartesian coordinate systems, 
all with origin 0 at the centre of mass of the solid: a rigidly attached system xycyz, whose 
axes do not coincide with the system z*y,z, of the principal central axes of inertia of the 
body, and an inertial coordinate system XYZ. 

The relative positions of the xgz and %&% bases are characterized by angles fi,$ 
and cp (Fig.1). The representation r of a vector R in the xyz basis 
its representation r* in the X*Y*Z* basis by the formula 

r = Br,, B = {Pi)} (i, j = 1, 29 3) 
(B is the matrix of direction cosines). 

Describing the rotary motion of the 
basis by the dynamical Euler equations 

Fig.1 

is expressed in terms of 

solid body in the xyz 

Jw’ f o x Jo = M, o = {co,, q,, co,} (1.1) 
we note that the inertia matrix J is related to the inertia matrix 

J, = diag {Jr, J,, J,l in the "*Y*Z* basis by the expression 

J = BJ,B’ 

To fix our ideas, we shall assume that J, <J, <J3 (the 
prime in the formula denotes transposition). 

It is assumed that the motion of the body is observed in the 
rigidly attached coordinate system xys; the controlling torque 
M in that system has the following structure: M = (0, My, Mz). 

Let 5 and n denote fixed unit vectors in the xyz basis and 
the XYZ inertial space, respectively. The motion of 11 relative 
to the rigidly attached coordinate system is governed by the 
equation 

(1.2) 

Assume that an angular velocity o, = 61 ( ) coy Id ( wz ) <Cd) is imported to the body. 

In view of the special structure of the controlling torque M, the effect of the control 
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process on the spherical motion of the body exhibits several singular features. 
Since the x-component of M is zero, it is impossible to stabilize uniform motion of the 

body about the x axis relative to the X~CYZ basis: 

00 = (9, 0, O}, Q = const (1.3) 

Thus, the suppression of the angular velocities oy and o, by controlling torques 

Mv = ko,, M, = kuz, k < 0 (1.4) 

causes a drop in the angular velocity o, and ultimately cancels out the gyroscopic properties 
of the rotating body. 

Theexplanation for this situation isthat the vector(l.3) is not an equilibrium position 
of system (1.1). The control (1.4) for its part, guarantees asymptotic stability of the zero 
solution of system (1.1). Thi% may be verified by using the Lyapunov function 2V =o’Jo and 
relying on the Barbashin-Krasovskii Theorem /l/. 

The situation is analogous when it is necessary to control the uniaxial orientation of 
the rotating body, with the fixed unit vector E in the xycyz system taken to be E = {l,O,O) 
and the controlling torque defined as 

M, = PQ + km,, Mz = -~rlz + km,, P>O,~<O (1.5) 

The control (1.5) coincides with the y- and z-components of the controlling torque M = 

~b x rl +ko which solves the problem of uniaxial orientation of the solid body when the 
component M, of the torque M does not vanish /2, 3/. 

These features of the control processes are illustrated in Figs.2 and 3, in which curves 
l-3 show the variation in time of the angular velocities a,? WY and o, (ox (0) = 52 = 1 s-l). 

Curve 4 in Fig.3 shows the variation during the control process of the cosine of the angle 
between the x axis (the vector 5) and the target direction (the vector 9). The graphs were 
drawn for a body with an ellipsoid of inertia having the following parameters: 

J, = O.i~lO”, J1 = IO”, J, = 1.2*1O"(kgm'); 6 = 5”, II, = 0,. cp = 45” 

In the algorithm (1.4) k = -0.3 x lO"Nms, while in (1.5) k = -0.313 x 10” Nms, 
and p = 0.05 x IO" Nm. For fi = 1” and the same values of the angles 21 and cp one 
observes a less intense drop in the value of o~(- by 4% after 40 seconds of motion). 

The specific features of the structure of the controlling torque dictate a different 
approach to control problems involving rotating solids. 

Note that rotation of the body at an angular velocity 

is an equilibrium position of system (1.1) (corresponding in the 
rotation about the 5% axis at an angular velocity of 0,). 

x*y,z, basis to permanent 

-025-l I I I 

Fig.2 Fig.3 
If the mismatch between the X and I, axes of the xyz and x*y,z, bases is small (the 

angle cp may take arbitrary values), the rotation of the body at angular velocity (1.6) dif- 
fers only slightly from the motion (1.3). Therefore, the torque M = {O,M,,iM,) should be 
used to stabilize the rotation (1.6). But in the control of uniaxial orientation, the fixed 
unit vector 5 in the xyz basis should be taken as 5 = {pII, fizl, &} (the unit vector of the 
principal central axis of inertia x* in the xyz basis). 

We now formulate two control problems. 

Problem 1. On the basis of the information available in the xyz coordinate system about 
the angular velocity vector w of the rotating body and the unit vector 5, it is required to 
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synthesize a control M = (0, M,, M,) under which the permanent rotation (1.6) of the body 
is stable. 

Problem 2. Assuming that the vectors o and r\ are measurable in the xyz system, it is 
required to synthesize a controlling torque M = (0, My, MA under which the uniaxial 
orientation of the body is stable: 

E = 11, 0 = o* (1.7) 

2. ControtZing rotary motion. Using the formula 

0 = x + 8*8, x = {X,) (i = 1, 2, 3) 

we introduce now variable Xi and, using (l.l), write the equation of perturbed motion of the 
body as follows: 

JX' + a& x JX + X x J&J,5 +X1 =M (2.1) 

The solution of Problem 1 will be a torque M, application of which makes the trivial 
solution of Eq.(2.1) stable. 

Choosing the controlling torque as 

iK, = k (X, - 1321 (E’W, Mz = k (X, - PSI (KU (2.2) 

or, in matrix notation, 

we shall show that the control (2.2) is the desired solution. 
The equation of the perturbed motion (2.1), rewritten in terms of the z*y,z, basis, is 

1,x' + Q,&, x 1,x+x x J*(Q&* f x)= M, (2.4) 

E, = {I, 0, 0) = B’& x = {q} = B’X 

and by (2.3) the controlling torque M, is defined by the relation 

(2.5) 

We now consider a positive definite function of 4 and xQ 

2Vl = J* ($2 - J&s2 + Js (J, - JlW (2.6) 

which is a first integral of system (2.4) if M,=O /4/. 
The derivative of VI with respect to time along trajectories of Eqs.(2.4) and (2.5) 

where it is assumed that 

k < 0, (J, - Jr)(Ja - J,)Su2 - '1, (J, - J&&S%* > 0 (2.71 

is a negative definite quadratic form with respect to the vector y. This implies asymptotic 
stability with respect to the variables xz and x3. 

It follows from an analysis of the first equation of system (2.4) and the torque MI in 
(2.5) that, as the variables Z~ and x8 approach zero asymptotically, the variable z1 tends 
to c = con&. 

Thus, if conditions (2.7) are satisfied, the trivial solution of Eq.(2.4) is asymp- 
totically y-stable (in the terminology of /5/j. This implies that the trivial solution of 
system (2.1) is stable. 

To sum up the control (2.2), which is conveniently written as 

My = k (q, - f& (g’w)), Mz = k (% - 831 (E’d (2.8) 

is a solution of Problem 1. 
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3. ControZ of uniaxid orientation. Rewrite Eqs.tl.1) and (1.2) as 

IX'=M-Q&X IX-Xx 1(X{-Q&) 
Z’ = z x (X + Q&) + b x x (3.1) 

x=0-cl*g, z=q-g 

If the controlling torque H had an x-component, a control of the form, say /2, 3/, 

M = pf x Z + KX, p > 0, K = diag {k,, k,, k3) (3.2) 

with k, < 0, k,k3 - 1/.&*2 (J, - J,)* > 0 (i = 1, 2, 3), would guarantee asymptotic stability of the 
regime (1.7) of uniaxial orientation of the body. 

Defining the controlling torque N as the sum of the first term of (3.2) without its x- 
component, and the torque (2.31, we obtain a control 

M=pPZ + kQX, p>O (3.3) 

which, we claim, is the desired solution. 
To prove this, we write Eqs.(3.1) of the perturbed motion in the z*y,z, basis 

J,x; = (J, - J&G, + M, (3.4) 
J,x,’ = (J, - J,Hx, + Q,h + Mz 
J,G’ = (J1 - J,)(x, + Q&s + % 

2 1’ = x3.z2 - xc&, z*’ = 6% + Q*h - x3 @I + 1) 
23’ = x2 (z1 + 1) - (Xl + Q*)z, 

M, = {&I'~} = c”P,z + kQ,x, z = {zi} = B’Z 

(i = 1, 2, 3) 

and introduce new variables 

Yl = kx, - pz3, Y, = kx, -C t”zz, Yi+z = zi (i = 1, 2, 3) 

In terms of these new variables and the resulting expression 

I - PllWl - BllBlSYZ 
M* = (1 - IL”) y1- 812rw2 

- fGw1 -:- t: - lL2)Yz I 
for the controlling torque M, = {Mi}, the system of Eqs.(3.4) becomes 

J,x,’ = -fl&Y1 - P&sYs + k-’ (Jz - JdO’1 + N’s) (yz - PY,) 

J,Y,’ = a,,Y, -t- a,,Y, f a13Y, -I- %,Y, + /I (y ) 
J8Y,’ = a,$‘, + a,,Y, + aA’, -t- a,,YS + fi V) 
Y,' = k-’ (Y,Y, - Y,Y,) - pk-’ (Yo” + Y,2) 

Y; = -k-‘Y, + pk-‘Y, + (Li, + x,)Y, - k-’ (Yz - I”Y,)Y, 
Y,’ = k-‘Y, - (Q, i- x1) Y, + pk--‘Y, + k-’ (Y, + pY,) Y, 

a,, = k (1 - fi12”) - J&l, a12 = (J, - JdQ, -t- 4 - klM& 
aI3 = (J1 + J, - J,W, + 4pL, a14 = -J,W’; 

a 21 = (J1 - J&2, + xl) - kB1A3, a,, = k (1 - IW - JN’ 
az3 = J,pWl, azd = (J1 - Jz + J,@, + “1)~ 

fi (Y) = -J,pk-’ (Yl + pY,)Y,, fz W = -J,W’ (yz - @‘,)y, 
Y = {Yj} (j = 1, 2,. . ., 5) 

Consider the following positive definite function of the vector Y, 

ZV, = J,Y,” + J3Y22 t- Y (Ya2 + Ya2 + Ys2), Y > 0 

whose time derivative along trajectories of Eqs.(3.6) may be expressed as 

(3.5) 

(3.6) 

(3.7) 



v,’ = sss + R (Y), s = ‘/s (T + T’) 

5 = {Y,* yz, y*, YJ, R (Y) = Yjl (Y) + Yj* (Y) 

II a11 aI2 + a,, aI3 aI4 + vk-l (1 
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(3.8) 

T= 8 I az2 aeS - vk-’ a,, 
0 pvk-l 0 

0 0 0 pvk-l I 

Since the positive (or negative) definiteness of an analytic function depends entirely 
on the lowest-order terms in its expansion /4/, it follows that the right-hand side of (3.8), 
as a function of the vector 5, willbe negative definite if this is true of the quadratic form 

SK 
Choose the coefficients p, v and k in such a way that the function c'st is negative 

definite. Then the first term in (3.81, as a function of Y, will be negative semidefinite, 
since, in view of the first integral 

Y,2 + Y4P + Y5Z + ZY, = 0 

of system (3.6), it vanishes not only at Y =0 but also at the point 

N = {Y:c =O, Y, = -Z} 

Analysis of the equations of the first approximation relative to the point N indicates 
that N is an unstable equilibrium position of system (3.6). 

Thus, if S<O the vector Y asymptotically approaches zero. Simultaneously, according 
to the structure of the first equation of sysbem (3.6) and the torque M,,the coordinate x1 
approaches c, = conk The trivial solution of system (3.6) is asymptotically Y-stable imply- 
ing that the equilibrium position x=0,2=0 of system (3.1) is asymptotically Z-stable. 

The control I3.3), whose components M, and M, can be written 

maintains the required orientation of the axis of the body and is thus a solution of Problem 2. 

4. AlZaKlnce for constraints on the control parameters. We now extend the results of 
Sects.2 and 3 to the case in which the torques My and Mzy which are related to the control 
parameters u1 and ZL~ by the formulae 

M,, = myul, M._ = myua 

tm,, m, > 0 are constant coefficients), are subject to a constraint 

MEG = {MI: 1 ui I< 1, i = 1,2} 

To that end we shall use the approach proposed in /6/. We first find the maximum M" of 
the controlling torque H in the n-direction in the yz plane, where n = {a, fl} is a unit 
vector, and determine the relevant values u," and us0 of the control parameters. 

If ) a 1 > mymz-l ) /3 (, then 

If 1 a I< mym,pl j b 1 , then 

If the torque (2.8) controlling the rotary motion of the body does not belong to the set 
G, we redefine the controlling torque as 

where ul' and h," are the control parameters corresponding,to the maximum M" of the available 
torque relative to the n-direction with unit vector 

n = {MJll M II, Mzill M II> 
Note that if MV = My’, M, = M,” , 

V; = y*y’Sy, Y* = M”/ll M II 
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and if S<O this guarantees that 
The algorithm (3.3) controlling 

expressed as the sum of two terms: 

the system will approach the equilibrium position (1.6). 
the uniaxial orientation of the rotationg body may be 

M = M, (Z) + M,(X) 

Assume that, for any orientation of the body, the first term satisfies the condition 

M,(Z) = ppZ EG 

The second component of the torque will be evaluated from the formula 

M, (X) = x,kQX 

where X* is the maximum value of the parameter x in the range 0(x Q 1 such that 

M = M, (Z) + @QX E G 

Repeating the arguments of Sect.3, it can be shown that with this choice of controls, 
system (1.1) and (1.2) approaches the equilibrium position (1.7). 

5. Exumples. Typical patterns of the variation of the angular velocities w,., my, ez 
and the cosine of the angle between I and q when algorithms (2.8) and (3.9) are applied 
to control the uniform rotation of a solid about its principal axis of inertia and uniaxial 
orientation, respectively, are shown in Figs.4 and 5, respectively (for the notation, see 

‘f 

Figs.2 and 3). 

wi,s-1 
I_- I 

Wi,S-’ 

1 

-0.25 -LJ.25 

Fig.4 Fig.5 

The system was modelled with the parameter values of the inertia ellipsoid specified in 
Sect.1. To the angles fi= 5O, cp=45O,q=O there corresponds a unit vector 

E = {piI) = (0.996196, -0.06f617, 0.061617) 

along the principal axis of inertia z*. In (2.8), as in the algorithm (1.4), k= -0.3 x ion 

Nms. In the control of uniaxial orientation the controls are constructed for the following 
values of the parameters occurring in (3.91: k=- 0.313 x 10n Nms, p = 0.05 x 10” NM. 
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